Rehabilitation promotes recovery after whole blood-induced intracerebral hemorrhage in rats.
نویسندگان
چکیده
BACKGROUND Rehabilitation improves recovery after intracerebral hemorrhage (ICH) caused by collagenase infusion into the striatum of rats by promoting dendritic growth and reducing brain injury in this model. OBJECTIVE Effective preclinical testing requires multiple models because none, including the collagenase model, perfectly mimics human ICH. Thus, the authors assessed enhanced rehabilitation (ER), a combination of environmental enrichment and task-specific motor training, on skilled reaching, lesion size, and dendritic plasticity after whole blood-induced, striatal ICH. METHODS Three groups of rats were trained to retrieve food in a reaching task prior to ICH. One group was euthanized at 7 days, whereas 2 groups survived 7 weeks post-ICH. Of the latter, 1 group received 2 weeks of ER starting at 7 days, whereas controls did not. Reaching success was assessed 6 weeks after ICH. Lesion volume and dendritic length and complexity (contralateral striatum) were assessed. RESULTS The ICH caused reaching deficits that were markedly attenuated by ER as observed previously in the collagenase model. In contrast to that model, there was a time-dependent decline in dendritic length after untreated, whole blood-induced ICH. Furthermore, behavioral recovery was not accompanied by changes in lesion volume or contralateral dendritic morphology. CONCLUSIONS Converging data from animal models support the use of rehabilitation for ICH patients. However, although rehabilitation effectively promotes behavioral recovery, the mechanisms of action vary by model making it difficult to predict clinical effects.
منابع مشابه
Therapeutic Benefit of Intravenous Administration of Human Umbilical Cord Blood- Mononuclear Cells Following Intracerebral Hemorrhage in Rat
Objective(s) Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell–based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a rat model of intracerebral hemorrhage (ICH). In the present study, we hypothesize transplanted HUCB derived mononuclear cells (UC-MCs) can decrease injur...
متن کاملConstraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats.
BACKGROUND AND PURPOSE Constraint-induced movement therapy (CIMT) promotes motor recovery after occlusive stroke in humans, but its efficacy after intracerebral hemorrhage (ICH) has not been investigated clinically or in the laboratory. In this study we tested whether CIMT and a rehabilitation exercise program would lessen motor deficits after ICH in rats. METHODS Rats were subjected to stria...
متن کاملCombined use of a cytoprotectant and rehabilitation therapy after severe intracerebral hemorrhage in rats.
After moderate intracerebral hemorrhage (ICH), both hypothermia (HYPO) and constraint-induced movement therapy (CIMT) improve recovery and reduce the volume of brain injury. We tested the hypothesis that more severe ICH requires both cytoprotection and rehabilitation to significantly improve recovery. Rats were subjected to a unilateral striatal ICH via collagenase infusion. Rats remained normo...
متن کاملFailure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats.
Intracerebral hemorrhage (ICH) is a devastating stroke with no clinically proven treatment. Deferoxamine (DFX), an iron chelator, is a promising therapy that lessens edema, mitigates peri-hematoma cell death, and improves behavioral recovery after whole-blood-induced ICH in rodents. In this model, blood is directly injected into the brain, usually into the striatum. This mimics many but not all...
متن کاملSIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats
Silent information regulator 1 (SIRT1) exerts neuroprotection in many neurodegenerative diseases. However, it is not clear if SIRT1 has protective effects after intracerebral hemorrhage (ICH)-induced brain injury in rats. Thus, our goal was to examine the influence of SIRT1 on ICH injuries and any underlying mechanisms of this influence. Brain injury was induced by autologous arterial blood (60...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurorehabilitation and neural repair
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2011